FUNCTIONS
More illustrative examples:
1. Given that f(x) = 2x +1:
Evaluate:
a). f(1)
b. f(-1)
c) f(-3)
Solution for:
a) f(x) = 2x +1; @ x=1
f (1) =2*1+1
f (1) = 2 + 1
f (1) = 3 answer
b). f(x) = 2x +1; @ x=-1
f(-1) =2(-1)+1
f(-1) = -2 + 1
f(-1) = -1 answer
c). f(x) = 2x +1; @ x=-3
f(-3) =2(-3)+1
f(-3) = -6 + 1
f(-3) = -5 answer
2). Given that g(x) = 3x -2:
Evaluate:
a). g(0)
b. g(-2)
c) g(3)
Solution for:
a). g(x) = 3x -2;@ x =0
g(0) = 3(0) - 2
g(0) = 0 - 2
g(0) = -2 answer
b). g(x) = 3x -2; @ x =-2
g(-2) = 3(-2) -2
g(-2) = -6 - 2
g(-2) = -8 answer
c). g(x) = 3x -2; @ x =3
g(-3) = 3(-3) -2
g(-3) = -9 - 2
g (-3) = -11 answer
Given:
Let: A) f (x) = x2 – 3x + 2,
B) g (x) = 2x2 + 3x - 1,
C) h (x) = x2 – 3;
Evaluate:
1. f (-2) = ___________
2. g (-1) = ___________
3. f ( 0 ) = ___________
4. g (2a) = ___________
5. f - c) = ___________
6. h (2z) = ___________
7. f (- a b) = __________
8. f [ h (-2) ] = ________
9. g [ f (2a) ] = ________
10. f { g [ h (-2) ] } = _________
(Please comment for improvement. thank you)